题目内容
【题目】如图所示,已知AD∥BC,AB⊥BC,CD⊥DE,CD=ED,AD=6,BC=9,则△ADE的面积为_____.
【答案】9.
【解析】
知道AD的长,只要求出AD边上的高,就可以求出△ADE的面积;过点D作DG⊥BC于G,过点E作EF⊥AD交AD的延长线于F,构造出△EDF≌△CDG,求出GC的长,即为EF的长,利用三角形的面积公式解答即可.
过点D作DG⊥BC于G,过点E作EF⊥AD交AD的延长线于F,如图所示:
则四边形ABGD是矩形,
∴AD=BG,
∵∠EDF+∠FDC=90°,
∠GDC+∠FDC=90°,
∴∠EDF=∠GDC,
在△EDF和△CDG中,
,
∴△EDF≌△CDG(AAS),
∴EF=CG=BC-BG=BC-AD=9-6=3,
∴S△ADE=ADEF=×6×3=9,
故答案为:9.
练习册系列答案
相关题目
【题目】如图,是一种斜挎包,其挎带由双层部分、单层部分和调节扣构成.小敏用后发现,通过调节扣加长或缩短单层部分的长度,可以使挎带的长度(单层部分与双层部分长度的和,其中调节扣所占的长度忽略不计)加长或缩短.设单层部分的长度为xcm,双层部分的长度为ycm,经测量,得到如下数据:
单层部分的长度x(cm) | … | 4 | 6 | 8 | 10 | … | 150 |
双层部分的长度y(cm) | … | 73 | 72 | 71 | … |
(1)根据表中数据的规律,完成以下表格,并直接写出y关于x的函数解析式;
(2)根据小敏的身高和习惯,挎带的长度为120cm时,背起来正合适,请求出此时单层部分的长度;
(3)设挎带的长度为lcm,求l的取值范围.