题目内容

【题目】如图,在△ABC中,∠ACB=90°,BC=6,分别以点A和点C为圆心,以相同的长(大于 AC)为半径作弧,两弧相交于点M和点N , 作直线MNAB于点D , 交AC于点E , 连接CD . 则DE的长为

【答案】3
【解析】解:∵DEAC的垂直平分线,∴AEECDEBC , ∠A=∠DCE , ∴DE是△ABC的中位线,
DEBC=3.
所以答案是3.
【考点精析】掌握三角形的“三线”是解答本题的根本,需要知道1、三角形角平分线的三条角平分线交于一点(交点在三角形内部,是三角形内切圆的圆心,称为内心);2、三角形中线的三条中线线交于一点(交点在三角形内部,是三角形的几何中心,称为中心);3、三角形的高线是顶点到对边的距离;注意:三角形的中线和角平分线都在三角形内.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网