题目内容
【题目】某商店经营家居收纳盒,已知成批购进时的单价是20元.调查发现:销售单价是30元时,月销售量是230件,而销售单价每上涨1元,月销售量就减少10件,但每个收纳盒售价不能高于40元.设每个收纳盒的销售单价上涨了元时(为正整数),月销售利润为元.
(1)求与的函数关系式.
(2)每个收纳盒的售价定为多少元时,月销售利润恰为2520元?
(3)每件玩具的售价定为多少元时可使月销售利润最大?最大的月利润是多少?
【答案】(1)(0≤x≤10);(2)32元;(3)售价定为36元或37元时,每个月可获得最大利润,最大的月利润是2720元.
【解析】
(1)利用利润=每件的利润×数量即可表示出与的函数关系式;
(2)令第(1)问中的y值为2520,解一元二次方程即可得出x的值;
(3)根据二次函数的性质求得最大值即可.
(1)根据题意有:
每个收纳盒售价不能高于40元
(2)令
即
解得或
此时售价为30+2=32元
(3)
∵为正整数
∴当或时,y取最大值,最大值为
此时的售价为30+6=6元或30+7=37元
答:售价定为36元或37元时,每个月可获得最大利润,最大的月利润是2720元.
练习册系列答案
相关题目