题目内容
【题目】如图在等腰Rt△ABC中,∠C=90°,AC=BC,AD平分∠BAC交BC于D,DE⊥AB于E,若AB=10,则△BDE的周长等于 .
【答案】10
【解析】解:∵AD平分∠CAB,AC⊥BC于点C,DE⊥AB于E,∴CD=DE. 又∵AD=AD,
∴Rt△ACD≌Rt△AED,∴AC=AE.
又∵AC=BC,
∴BC=AE,
∴△DBE的周长为DE+BD+EB=CD+BD+EB=BC+EB=AC+EB=AE+EB=AB=10.
(提示:设法将DE+BD+EB转成线段AB).
所以答案是:10.
【考点精析】本题主要考查了等腰直角三角形和角平分线的性质定理的相关知识点,需要掌握等腰直角三角形是两条直角边相等的直角三角形;等腰直角三角形的两个底角相等且等于45°;定理1:在角的平分线上的点到这个角的两边的距离相等; 定理2:一个角的两边的距离相等的点,在这个角的平分线上才能正确解答此题.
练习册系列答案
相关题目