题目内容

【题目】如图,已知AC∥BD,EA、EB分别平分∠CAB和∠DBA,CD过点E,求证:AB=AC+BD.

【答案】证明:在AB上取一点F,使AF=AC,连结EF.
∵EA、EB分别平分∠CAB和∠DBA,
∴∠CAE=∠FAE,∠EBF=∠EBD.
∵AC∥BD,
∴∠C+∠D=180°.
在△ACE和△AFE中,

∴△ACE≌△AFE(SAS),
∴∠C=∠AFE.
∵∠AFE+∠EFB=180°,
∴∠EFB=∠D.
在△BEF和△BED中,

∴△BEF≌△BED(AAS),
∴BF=BD.
∵AB=AF+BF,
∴AB=AC+BD.
【解析】在AB上取一点F,使AF=AC,连结EF,就可以得出△ACE≌△AFE,就有∠C=∠AFE.由平行线的性质就有∠C+∠D=180°,由∠AFE+∠EFB=180°得出∠EFB=∠D,在证明△BEF≌△BED就可以得出BF=BD,进而就可以得出结论.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网