题目内容
【题目】如图,正方形ABCD中,AB=1,点P是BC边上的任意一点(异于端点B、C),连接AP,过B、D两点作BE⊥AP于点E,DF⊥AP于点F.
(1)求证:EF=DF﹣BE;
(2)若△ADF的周长为,求EF的长.
【答案】(1)见解析;(2).
【解析】
(1)由正方形的性质得出AD=AB,证出∠DAF=∠ABE,由AAS证明△ADF≌△BAE,得出AF=BE,DF=AE,即可得出结论;
(2)设DF=a,AF=b,EF=DF-AF=a-b>0,由已知条件得出DF+AF=,即a+b=,由勾股定理得出a2+b2=1,再由完全平方公式得出a-b即可.
(1)证明:∵BE⊥AP,DF⊥AP,
∴∠DFA=∠AEB=90°,∠ABE+∠BAE=90°,
∵四边形ABCD为正方形,∴AD=AB,∠DAB=90°=∠DAF+∠BAE,
∴∠DAF=∠ABE,
在△ADF和△BAE中,∠DAF=∠ABE,∠DFA=∠AEB,AD=AB,
∴△ADF≌△BAE(AAS),
∴AF=BE,DF=AE,
∴EF=AE﹣AF=DF﹣BE;
(2)解:设DF=a,AF=b,EF=DF﹣AF=a﹣b>0,∵△ADF的周长为,AD=1,∴DF+AF=,
即a+b=,由勾股定理得:DF2+AF2=AD2,即a2+b2=1,
∴(a﹣b)2=2(a2+b2)﹣(a+b)2=2﹣,∴a﹣b=,即EF=.
练习册系列答案
相关题目