题目内容
【题目】在正方形ABCD中,BD为对角线,点P从A出发,沿射线AB运动,连接PD,过点D作DE⊥PD,交直线BC于点E.
(1)当点P在线段AB上时(如图1),求证:BP+CE=BD;
(2)当点P在线段AB的延长线上时(如图2),猜想线段BP、CE、BD之间满足的关系式,并加以证明;
(3)若直线PE分别交直线BD、CD于点M、N,PM=3,EN=4,求PD的长.
【答案】(1)证明见解析(2)CE﹣BP=BD,理由见解析(3)3或6
【解析】
试题分析:(1)根据已知和图形证明△PAD≌△ECD,得到AP=CE,根据AB=BD,得到答案;
(2)与(1)的方法类似,求出结论;
(3)分P在线段AB上和P在AB延长线上两种情况进行讨论,根据三角形全等和勾股定理证明结论.
证明:(1)∵四边形ABCD是正方形,
∴∠A=∠ADC=∠BCD=∠DCE=90°,AD=CD,
∵DE⊥PD,
∴∠ADC=∠PDE=90°,
∴∠ADP=90°﹣∠PDC=∠CDE,
∴△PAD≌△ECD,
∴AP=CE,
∴BP+CE=BP+AP=AB=BD;
(2)CE﹣BP=BD;
理由:△PAD≌△ECD,
∴CE=AP,
∴CE﹣BP=AP﹣BP=AB=BD;
(3)①当P在线段AB上时,
如图1所示,在BC上取一点G使得BG=BP,连接MG、NG,
∵△APD≌△CED,
∵AP=CE,PD=ED,
∴△PED是等腰直角三角形,
∴AB=BC=AP+BP=BG+CG,
∴CG=CE,
∴可证△NCG≌△NCE,
∴NG=NE,∠NGC=∠NEC,
∵∠PBM=∠GBM=45°,BP=BG,BM=BM,
∴△BPM≌△BGM
∴PM=GM,∠MGB=∠MPB,
又∠NEC+∠MPB=90°,
∴∠NGC+∠MGB=90°,
∴∠MGN=90°,
∴MN==5,
∴PE=PM+MN+EN=3+5+4=12,
∴PD=PE=6;
②当P在AB延长线上时,
如图2所示,延长CB至G,使得CG=CE,连接MG、NG,
∵AP=CE,
∴CE﹣BC=CG﹣BC=AP﹣AB=BP=BG,
同①可证△△BMG≌△BMP,△CNG≌△CNE,
∴PM=GM,GN=EN,∠BGM=∠BPM=90°+∠CEN=90°+CGN,
∴∠CGN=∠BGM﹣90°=∠BGM﹣∠MGN,
∴∠MGN=90°,
∴MN==5,
∴PN=MN﹣PM=5﹣3=2,
∴PE=PN+EN=2+4=6,
∴PD=PE=3,
∴PD的长为3或6.