题目内容

【题目】如图,已知直线 与x轴、y轴相交于P、Q两点,与y=的图像相交于A(-2,m)、B(1,n)两点,连接OA、OB. 给出下列结论: k1k2<0;m+n=0; SAOP= SBOQ不等式k1x+b>的解集是x<-2或0<x<1,其中正确的结论的序号是 .

【答案】②③④.

【解析】

试题分析:由直线 的图像在二、四象限,知k1<0;y=的图像在二、四象限,知k2<0;因此k1k2>0,所以错误;A,B两点在y=的图像上,故将A(-2,m)、B(1,n)代入,得m=,n= k2;从而得出m+n=0,故正确;令x=0,则y=b,所以Q(0,b),则SBOQ=×1×|b|= -b;将A(-2,m)、B(1,n)分别代入,解得k1=,所以y=x+b;令y=0,则x=-b,所以P(-b,0),则SAOP=×|-2|×|-b|= -b;所以SAOP= SBOQ,故正确;由图像知,在A点左边,不等式k1x+b的图像在的图像的上边,故满足k1x+b>;在Q点与A点之间,不等式k1x+b的图像在的图像的上边,故满足k1x+b>;因此不等式k1x+b>的解集是x<-2或0<x<1. 正确.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网