题目内容
(2011•攀枝花)如图,已知直线l1:
与直线 l2:y=﹣2x+16相交于点C,直线l1、l2分别交x轴于A、B两点,矩形DEFG的顶点D、E分别在l1、l2上,顶点F、G都在x轴上,且点G与B点重合,那么S矩形DEFG:S△ABC= .


8:9
由
x+
=0,得x=﹣4.
∴A点坐标为(﹣4,0),
由﹣2x+16=0,得x=8.
∴B点坐标为(8,0),
∴AB=8﹣(﹣4)=12.
由
,解得
,
∴C点的坐标为(5,6),
∴S△ABC=
AB•C=
×12×6=36.
∵点D在l1上且xD=xB=8,
∴yD=
×8+
=8,
∴D点坐标为(8,8),
又∵点E在l2上且yE=yD=8,
∴﹣2xE+16=8,
∴xE=4,
∴E点坐标为(4,8),
∴DE=8﹣4=4,EF=8.
∴矩形面积为:4×8=32,
∴S矩形DEFG:S△ABC=32:36=8:9.
故答案为:8:9.


∴A点坐标为(﹣4,0),
由﹣2x+16=0,得x=8.
∴B点坐标为(8,0),
∴AB=8﹣(﹣4)=12.
由


∴C点的坐标为(5,6),
∴S△ABC=


∵点D在l1上且xD=xB=8,
∴yD=


∴D点坐标为(8,8),
又∵点E在l2上且yE=yD=8,
∴﹣2xE+16=8,
∴xE=4,
∴E点坐标为(4,8),
∴DE=8﹣4=4,EF=8.
∴矩形面积为:4×8=32,
∴S矩形DEFG:S△ABC=32:36=8:9.
故答案为:8:9.

练习册系列答案
相关题目