题目内容
【题目】已知在△ABC中,AC=BC,分别过A,B两点作互相平行的直线AM,BN,过点C的直线分别交直线AM,BN于点D,E.
(1)如图1,若AM⊥AB,求证:CD=CE;
(2)如图2,∠ABC=∠DEB=60°,判断线段AD,DC与BE之间的关系,并说明理由.
【答案】(1)见解析;(2)AD+DC=BE,理由见解析
【解析】
(1)延长AC交BN于点F,证明△ADC≌△FEC(ASA),即可得出结论;
(2)在EB上截取EH=EC,连接CH,证明△DAC≌△HCB(AAS),得出AD=CH,DC=BH,即可得出结论.
(1)证明:如图1,延长AC交BN于点F,
∵AC=BC,
∴∠CAB=∠CBA,
又∵AB⊥AM,
∴∠BAM=90°,
又∵AM∥BN,
∴∠BAM+∠ABN=180°,
∴∠ABN=90°,
∴∠BAF+∠AFB=90°,∠ABC+∠CBF=90°,
∴∠CBF=∠AFB,
∴BC=CF,
∴AC=FC,
又∵AM∥BN,∴∠DAF=∠AFB,
在△ADC和△FEC中,,
∴△ADC≌△FEC(ASA),
∴DC=EC;
(2)解:AD+DC=BE;理由如下:
如图2,在EB上截取EH=EC,连接CH,
∵AC=BC,∠ABC=60°,
∴△ABC为等边三角形,
∵∠DEB=60°,
∴△CHE是等边三角形,
∴∠CHE=60°,∠HCE=60°,
∴∠BHC=120°,
∵AM∥BN,
∴∠ADC+∠BEC=180°,
∴∠ADC=120°,
∴∠DAC+∠DCA=60°,
又∵∠DCA+∠ACB+∠BCH+∠HCE=180°,
∴∠DCA+∠BCH=60°,
∴∠DAC=∠BCH,
在△DAC与△HCB中,,
∴△DAC≌△HCB(AAS),
∴AD=CH,DC=BH,
又∵CH=CE=HE,
∴BE=BH+HE=DC+AD,
即AD+DC=BE.