题目内容
【题目】如图,在平面直角坐标系xOy中,点A(1,0),B(2,0),正六边形ABCDEF沿x轴正方向无滑动滚动,每旋转60°为滚动1次,那么当正六边形ABCDEF滚动2017次时,点F的坐标是( )
A. (2017,0) B. (2017, ) C. (2018, ) D. (2018,0)
【答案】C
【解析】正六边形ABCDEF一共有6条边,即6次一循环;因为2017÷6=336余1,点F滚动1次时的横坐标为2,纵坐标为,点F滚动7次时的横坐标为8,纵坐标为,所以点F滚动2107次时的纵坐标与相同,横坐标的次数加1,由此即可解决问题.
解:∵正六边形ABCDEF一共有6条边,即6次一循环;
∴2017÷6=336余1,
∴点F滚动1次时的横坐标为2,纵坐标为,点F滚动7次时的横坐标为8,纵坐标为,
∴点F滚动2107次时的纵坐标与相同,横坐标的次数加1,
∴点F滚动2107次时的横坐标为2017+1=2018,纵坐标为,
∴点F滚动2107次时的坐标为(2018, ),
故选C.
“点睛”本题考查坐标与图形的变化,规律型:点的坐标,解题的关键是学会从特殊到一般的探究方法,属于中考常考题型.
练习册系列答案
相关题目