题目内容
【题目】如图,某校数学兴趣小组利用自制的直角三角形硬纸板DEF来测量操场旗杆AB的高度,他们通过调整测量位置,使斜边DF与地面保持平行并使直角边DE与旗杆顶点A在同一直线上,已知DE=0.5米,EF=0.25米,目测点D到地面的距离DG=1.5米,到旗杆的水平距离DC=25米,求旗杆AB的高度.
【答案】AB=14.
【解析】分析:求出△ACD和△FED相似,根据相似三角形对应边成比例列式求出AC,再求出BC=DG,然后根据旗杆的高度AB=AC+BC代入数据计算即可得解.
本题解析:∵∠ADC=∠FDE,∠ACD=∠FED=90°,
∴△ACD∽△FED,
∴,
即,
解得AC=12.5,
∵AB⊥BG,DG⊥BG,DC⊥AB,
∴∠ABG=∠BGD=∠DCB=90°,
∴四边形BGDC是矩形,
∴BC=DG=1.5,
∴AB=AC+BC=12.5+1.5=14米。
答:旗杆AB的高度是14米。
练习册系列答案
相关题目
【题目】为了解某种品牌小汽车的耗油量,我们对这种车在高速公路上做了耗油试验,并把试验的数据记录下来,制成下表:
汽车行驶时间t(h) | 0 | 1 | 2 | 3 | … |
油箱剩余油量Q(L) | 100 | 94 | 88 | 82 | … |
①根据上表的数据,请你写出Q与t的关系式;
②汽车行驶5h后,油箱中的剩余油量是多少?
③该品牌汽车的油箱加满50L,若以100km/h的速度匀速行驶,该车最多能行驶多远?
【题目】某商场用2700元购进甲、乙两种商品共100件,这两种商品的进价、标价如下表所示:
甲种 | 乙种 | |
进价(元/件) | 15 | 35 |
标价(元/件) | 20 | 45 |
(1)求购进两种商品各多少件?
(2)商品将两种商品全部卖出后,获得的利润是多少元?