题目内容
【题目】如图,点A的坐标是(﹣1,0),点B的坐标是(0,6),C为OB的中点,将△ABC绕点B逆时针旋转90°后得到△A'BC.若反比例函数y=的图象恰好经过A'B的中点D,则k的值是( )
A.19B.16.5C.14D.11.5
【答案】B
【解析】
作A′H⊥y轴于H.证明△AOB≌△BHA′(AAS),推出OA=BH,OB=A′H,求出点A′坐标,再利用中点坐标公式求出点D坐标即可解决问题.
解:作A′H⊥y轴于H.
∵∠AOB=∠A′HB=∠ABA′=90°,
∴∠ABO+∠A′BH=90°,∠ABO+∠BAO=90°,
∴∠BAO=∠A′BH,
∵BA=BA′,
∴△AOB≌△BHA′(AAS),
∴OA=BH,OB=A′H,
∵点A的坐标是(﹣1,0),点B的坐标是(0,6),
∴OA=1,OB=6,
∴BH=OA=1,A′H=OB=6,
∴OH=5,
∴A′(6,5),
∵BD=A′D,
∴D(3,5.5),
∵反比例函数y=的图象经过点D,
∴k=16.5.
故答案选:B.
练习册系列答案
相关题目