题目内容
【题目】如图,⊙O是△ABC的外接圆,AB是⊙O的直径,FO⊥AB,垂足为点O,连接AF并延长交⊙O于点D,连接OD交BC于点E,∠B=30°,FO=2 .
(1)求AC的长度;
(2)求图中阴影部分的面积.(计算结果保留根号)
【答案】
(1)解:∵OF⊥AB,
∴∠BOF=90°,
∵∠B=30°,FO=2 ,
∴OB=6,AB=2OB=12,
又∵AB为⊙O的直径,
∴∠ACB=90°,
∴AC= AB=6
(2)解:∵由(1)可知,AB=12,
∴AO=6,即AC=AO,
在Rt△ACF和Rt△AOF中,
∴Rt△ACF≌Rt△AOF,
∴∠FAO=∠FAC=30°,
∴∠DOB=60°,
过点D作DG⊥AB于点G,
∵OD=6,∴DG=3 ,
∴S△ACF+S△OFD=S△AOD= ×6×3 =9 ,
即阴影部分的面积是9
【解析】(1)解直角三角形求出OB,求出AB,根据圆周角定理求出∠ACB,解直角三角求出AC即可;(2)求出△ACF和△AOF全等,得出阴影部分的面积=△AOD的面积,求出三角形的面积即可.
练习册系列答案
相关题目
【题目】求一个正数的算术平方根,有些数可以直接求得,如,有些数则不能直接求得,如,但可以通过计算器求. 还有一种方法可以通过一组数的内在联系,运用规律求得,请同学们观察下表:
n | 16 | 0.16 | 0.0016 | 1600 | 160000 | … |
4 | 0.4 | 0.04 | 40 | 400 | … |
(1)若,则
(2)根据你发现的规律,探究下列问题:已知≈1.435,则:
①≈ ;
②≈ ;
(3)根据上述探究过程类比研究一个数的立方根已知≈1.260,则≈ .