题目内容

【题目】阅读理解:

我们知道,四边形具有不稳定性,容易变形,如图1,一个矩形发生变形后成为一个平行四边形,设这个平行四边形相邻两个内角中较小的一个内角为α,我们把的值叫做这个平行四边形的变形度.

(1)若矩形发生变形后的平行四边形有一个内角是120度,则这个平行四边形的变形度是

猜想证明:

(2)设矩形的面积为S1,其变形后的平行四边形面积为S2,试猜想S1,S2之间的数量关系,并说明理由;

拓展探究:

(3)如图2,在矩形ABCD中,E是AD边上的一点,且=AEAD,这个矩形发生变形后为平行四边形A1B1C1D1,E1为E的对应点,连接B1E1,B1D1,若矩形ABCD的面积为(m>0),平行四边形A1B1C1D1的面积为(m>0),试求∠A1E1B1+∠A1D1B1的度数.

【答案】(1);(2);(3)30°.

【解析】

试题分析:(1)根据平行四边形的性质得到α=60°,根据三角函数的定义即可得到结论;

(2)如图1,设矩形的长和宽分别为a,b,变形后的平行四边形的高为h,根据平行四边形和矩形的面积公式即可得到结论;

(3)由已知条件得到△B1A1E1∽△D1A1B1,由相似三角形的性质得到∠A1B1E1=∠A1D1B1,根据平行线的性质得到∠A1E1B1=∠C1B1E1,求得∠A1E1B1+∠A1D1B1=∠C1E1B1+∠A1B1E1=∠A1B1C1,证得∠A1B1C1=30°,于是得到结论.

试题解析:(1)∵平行四边形有一个内角是120度,∴α=60°,∴==

故答案为:

(2),理由:如图1,设矩形的长和宽分别为a,b,变形后的平行四边形的高为h,∴S1=ab,S2=ah,sinα=,∴==,∵=,∴

(3)∵=AEAD,∴=A1E1A1D1,即,∵∠B1A1E1=∠D1A1B1,∴△B1A1E1∽△D1A1B1,∴∠A1B1E1=∠A1D1B1,∵A1D1∥B1C1,∴∠A1E1B1=∠C1B1E1,∴∠A1E1B1+∠A1D1B1=∠C1E1B1+∠A1B1E1=∠A1B1C1,由(2)知可知==2,∴sin∠A1B1C1=,∴∠A1B1C1=30°,∴∠A1E1B1+∠A1D1B1=30°.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网