题目内容
【题目】如图所示,点P是边长为2的正方形ABCD的对角线BD上的动点,过点P分别作PE⊥BC于点E,PF⊥DC于点F,连接AP并延长,交射线BC于点H,交射线DC于点M,连接EF交AH于点G,当点P在BD上运动时(不包括B、D两点),以下结论中:①MF=MC;②AP=EF;③AH⊥EF;④AP2=PMPH;⑤EF的最小值是.其中正确结论有( )
A.2个B.3个C.4个D.5个
【答案】C
【解析】
由点P为BD中点时,MC=0≠MF,可得①错误;连接PC,交EF于O,由点P在BD上,可得AP=PC,根据PF⊥CD,PE⊥BC,∠BCF=90°可得四边形PECF是矩形,可得EF=PC,即判断②正确;利用SSS可证明△APD≌△CPD,可得∠DAP=∠DCP,由矩形的性质可得∠OCF=∠OFC,即可证明∠DAP=∠OFC,可得∠DAP+∠AMD=∠OFC+∠AMD=90°,即可判断③正确;根据平行线的性质可得∠DAP=∠H,可得∠DCP=∠H,由∠HPC是公共角可证明△CPM∽△HPC,根据相似三角形的性质可得,根据PC=AP即可判断④正确,当PC⊥BD时PC的值最小,根据等腰直角三角形的性质可求出PC的最小值为,根据EF=PC即可判断⑤正确;综上即可得答案.
当点P为BD中点时,点M与点C重合,MC=0≠MF,故①错误,
连接PC,交EF于O,
∵点P在BD上,BD为正方形ABCD的对角线,
∴AP=PC,
∵PF⊥CD,PE⊥BC,∠BCF=90°,
∴四边形PECF是矩形,
∴EF=PC,
∴AP=EF,故②正确,
∵AD=CD,AP=PC,PD=PD,
∴△APD≌△CPD,
∴∠DAP=∠DCP,
∵四边形PECF是矩形,
∴∠OCF=∠OFC,
∴∠DAP=∠OFC,
∴∠DAP+∠AMD=∠OFC+∠AMD=90°,
∴∠FGM=90°,即AH⊥EF,故③正确,
∵AD//BH,
∴∠DAP=∠H,
∵∠DAP=∠DCP,
∴∠MCP=∠H,
∵∠CPH为公共角,
∴△CPM∽△HPC,
∴,
∵AP=PC,
∴AP2= PMPH,故④正确,
当PC⊥BD时,PC有最小值,PC=BD=,
∵PC=EF
∴EF的最小值为,故⑤正确,
综上所述:正确的结论有②③④⑤,共4个,
故选C.
【题目】某市举行知识大赛,A校、B校各派出5名选手组成代表队参加决赛,两校派出选手的决赛成绩如图所示.
根据图示填写下表:
平均数分 | 中位数分 | 众数分 | |
A校 | ______ | 85 | ______ |
B校 | 85 | ______ | 100 |
结合两校成绩的平均数和中位数,分析哪个学校的决赛成绩较好;
计算两校决赛成绩的方差,并判断哪个学校代表队选手成绩较为稳定.