题目内容
【题目】甲口袋中装有两个相同的小球,它们的标号分别为2和7,乙口袋中装有两个相同的小球,它们的标号分别为4和5,丙口袋中装有三个相同的小球,它们的标号分别为3,8,9.从这3个口袋中各随机地取出1个小球.
(1)求取出的3个小球的标号全是奇数的概率是多少?
(2)以取出的三个小球的标号分别表示三条线段的长度,求这些线段能构成三角形的概率.
【答案】(1);(2)
【解析】
试题分析:(1)、根据题意画出树状图,根据树状图进行解答概率;(2)、根据树状图得出概率.
试题解析:(1)、画树状图得
∴一共有12种等可能的结果,取出的3个小球的标号全是奇数的有2种情况,
∴取出的3个小球的标号全是奇数的概率是:P(全是奇数)= =
(2)、∵这些线段能构成三角形的有2、4、3,7、4、8,7、4、9,7、5、3,7、5、8,7、5、9共6种情况,
∴这些线段能构成三角形的概率为P(能构成三角形)==.
练习册系列答案
相关题目
【题目】小林在某商店购买商品A、B若干次(每次A、B两种商品都购买),其中第一、二两次购买时,均按标价购买;第三次购买时,商品A、B同时打折.三次购买商品A、B的数量和费用如表所示.
购买商品A的数量/个 | 购买商品B的数量/个 | 购买总费用/元 | |
第一次购物 | 6 | 5 | 980 |
第二次购物 | 3 | 7 | 940 |
第三次购物 | 9 | 8 | 912 |
(1)求商品A、B的标价;
(2)若商品A、B的折扣相同,问商店是打几折出售这两种商品的?
(3)在(2)的条件下,若小林第四次购物共花去了960元,则小林有哪几种购买方案?