题目内容

【题目】如图,四边形ABCD中,AB=AC=AD,AC平分∠BAD,点P是AC延长线上一点,且PD⊥AD.
(1)证明:∠BDC=∠PDC;
(2)若AC与BD相交于点E,AB=1,CE:CP=2:3,求AE的长.

【答案】
(1)证明:∵AB=AD,AC平分∠BAD,

∴AC⊥BD,

∴∠ACD+∠BDC=90°,

∵AC=AD,

∴∠ACD=∠ADC,

∴∠ADC+∠BDC=90°,

∴∠BDC=∠PDC;


(2)解:过点C作CM⊥PD于点M,

∵∠BDC=∠PDC,

∴CE=CM,

∵∠CMP=∠ADP=90°,∠P=∠P,

∴△CPM∽△APD,

=

设CM=CE=x,

∵CE:CP=2:3,

∴PC= x,

∵AB=AD=AC=1,

=

解得:x=

故AE=1﹣ =


【解析】(1)直接利用等腰三角形的性质结合互余的定义得出∠BDC=∠PDC;(2)首先过点C作CM⊥PD于点M,进而得出△CPM∽△APD,求出EC的长即可得出答案.
【考点精析】通过灵活运用相似三角形的判定与性质,掌握相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方即可以解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网