ÌâÄ¿ÄÚÈÝ
ÒÑÖª£ºÕý·½Ðεı߳¤Îª1£¨1£©Èçͼ¢Ù£¬¿ÉÒÔËã³öÕý·½ÐεĶԽÇÏßΪ
£¿
£¨2£©¸ù¾Ýͼ¢Ú£¬ÇóÖ¤¡÷BCE¡×¡÷BED£»
£¨3£©ÓÉͼ¢Û£¬ÔÚÏÂÁÐËù¸øµÄÈý¸ö½áÂÛÖУ¬Í¨¹ýºÏÇéÍÆÀíÑ¡³öÒ»¸öÕýÈ·µÄ½áÂÛ¼ÓÒÔÖ¤Ã÷£¬1£®¡ÏBEC+¡ÏBDE=45¡ã£»¢²¡ÏBEC+¡ÏBED=45¡ã£»¢³¡ÏBEC+¡ÏDFE=45¡ã
×¢Ò⣺ÄãÍê³ÉÕûÕÅÊÔ¾íÈ«²¿ÊÔÌâµÄ½â´ðºó£¬Èç¹û»¹ÓÐʱ¼äÔÚͼ¢ÛÖз¢ÏÖеĽáÂÛ£¨²»×¼Ìí¼Ó¸¨ÖúÏߺÍÆäËü×Öĸ£©²¢¼ÓÒÔÖ¤Ã÷£¬½«×ÃÇé¼Ó1¡«3·Ö£®
·ÖÎö£º£¨1£©Ö÷ÒªÊǸù¾Ý¹´¹É¶¨ÀíÑ°ÕÒ¹æÂÉ£¬ÈÝÒ×ÔÚÊý¾ÝÖÐÕÒµ½ÕýÈ·½áÂÛ£»
£¨2£©ÔÚÿ¸öÈý½ÇÐÎÖУ¬¸ù¾Ý¹´¹É¶¨ÀíÒ×Çó³öÿÌõ±ßµÄ³¤¶È£¬¿ÉÀûÓÃÈý×é±ß¶ÔÓ¦³É±ÈÀý£¬Á½Èý½ÇÐÎÏàËÆÀ´Åж¨£»
£¨3£©ÓûÖ¤¡ÏBEC+¡ÏDFE=45¡ã£¬ÔÚ±¾ÌâÖеÈÓÚ45¡ãµÄ½ÇÓÐÁ½¸ö£¬¼´¡ÏAEBºÍ¡ÏBEF£¬ËùÒÔÔÚÖ¤Ã÷µÚÈý¸ö½áÂÛʱ£¬Ðè°ÑÕâÁ½¸ö½ÇÏ뷨תÒƵ½ÒÑÖªµÄÒ»¸ö½ÇÖÐÈ¥£¬ÀûÓõÈÑüÌÝÐεÄÐÔÖÊÇó½â¼´¿É£®
£¨2£©ÔÚÿ¸öÈý½ÇÐÎÖУ¬¸ù¾Ý¹´¹É¶¨ÀíÒ×Çó³öÿÌõ±ßµÄ³¤¶È£¬¿ÉÀûÓÃÈý×é±ß¶ÔÓ¦³É±ÈÀý£¬Á½Èý½ÇÐÎÏàËÆÀ´Åж¨£»
£¨3£©ÓûÖ¤¡ÏBEC+¡ÏDFE=45¡ã£¬ÔÚ±¾ÌâÖеÈÓÚ45¡ãµÄ½ÇÓÐÁ½¸ö£¬¼´¡ÏAEBºÍ¡ÏBEF£¬ËùÒÔÔÚÖ¤Ã÷µÚÈý¸ö½áÂÛʱ£¬Ðè°ÑÕâÁ½¸ö½ÇÏ뷨תÒƵ½ÒÑÖªµÄÒ»¸ö½ÇÖÐÈ¥£¬ÀûÓõÈÑüÌÝÐεÄÐÔÖÊÇó½â¼´¿É£®
½â´ð£º½â£º£¨1£©Óɹ´¹É¶¨ÀíÖª£¬ÔÚµÚÒ»¸öͼÐÎÖУ¬¶Ô½ÇÏß³¤=
=
£¬
µÚ¶þ¸öͼÐÎÖУ¬¶Ô½ÇÏß³¤=
=
£¬
µÚÈý¸öͼÐÎÖУ¬¶Ô½ÇÏß³¤=
=
£¬
ËùÒÔµÚn¸öͼÐÎÖУ¬¶Ô½ÇÏß³¤=
£»
£¨2£©ÔÚ¡÷BCEÖУ¬BC=1£¬BE=
£¬EC=
£¬
ÔÚ¡÷BEDÖУ¬BE=
£¬BD=2£¬ED=
£¬
ËùÒÔ
=
=
=
£¬
¡à¡÷BCE¡×¡÷BED£»
£¨3£©Ñ¡È¡¢Û£¬
¡ßCD¡ÎEF£¬ÇÒCE=DF£¬
¡àËıßÐÎCEFDΪµÈÑüÌÝÐΣ¬
¡à¡ÏDFE=¡ÏCEF£¬
¡à¡ÏBEC+¡ÏDFE=¡ÏBEC+¡ÏCEF=45¡ã£®
2 |
12+1 |
µÚ¶þ¸öͼÐÎÖУ¬¶Ô½ÇÏß³¤=
5 |
22+1 |
µÚÈý¸öͼÐÎÖУ¬¶Ô½ÇÏß³¤=
10 |
32+1 |
ËùÒÔµÚn¸öͼÐÎÖУ¬¶Ô½ÇÏß³¤=
n2+1 |
£¨2£©ÔÚ¡÷BCEÖУ¬BC=1£¬BE=
2 |
5 |
ÔÚ¡÷BEDÖУ¬BE=
2 |
10 |
ËùÒÔ
BE |
BC |
BD |
BE |
ED |
EC |
2 |
¡à¡÷BCE¡×¡÷BED£»
£¨3£©Ñ¡È¡¢Û£¬
¡ßCD¡ÎEF£¬ÇÒCE=DF£¬
¡àËıßÐÎCEFDΪµÈÑüÌÝÐΣ¬
¡à¡ÏDFE=¡ÏCEF£¬
¡à¡ÏBEC+¡ÏDFE=¡ÏBEC+¡ÏCEF=45¡ã£®
µãÆÀ£º´ËÌâÖ÷Òª¿¼²éÁËÏàËƵÄÅж¨¡¢¹´¹É¶¨ÀíµÄÔËÓᢵÈÑüÌÝÐεÄÐÔÖÊ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
ÒÑÖªÒ»¸öÕý·½Ðεı߳¤Îªa£¬Ãæ»ýΪS£¬Ôò£¨¡¡¡¡£©
A¡¢S=
| ||
B¡¢SµÄƽ·½¸ùÊÇa | ||
C¡¢aÊÇSµÄËãÊõƽ·½¸ù | ||
D¡¢a=¡À
|