题目内容

已知,如图,四边形ABCD是正方形,E、F分别是AB和AD延长线上的点,且BE=DF
(1)求证:CE=CF;
(2)求∠CEF的度数.
分析:(1)在△CDF和△CBE中,根据DC=BC,DF=BE且正方形各内角为直角可以求证△CDF≌△CBF,即可证明CE=CF;
(2)通过证明△ECF为等腰直角三角形,即可得出∠CEF的度数.
解答:(1)证明:在△CDF和△CBE中,∠CDA=90°,
∴∠CDF=90°
∴∠CDF=∠CBE=90°
CD=CB
∠CDF=∠CBE
DF=BE

∴△CDF≌△CBE,
∴CF=CE.

(2)解:∵△CDF≌△CBE,
∴∠DCF=∠BCE,
∴∠ECF=90°,
∵CF=CE,
∴∠CEF=45°.
点评:本题考查了正方形各边相等、各内角相等的性质,考查了等腰直角三角形的性质,全等三角形的判定和对应边相等的性质,本题中求证△CDF≌△CBE是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网