题目内容

【题目】如果一个多位自然数的任意两个相邻数位上,左边数位上的数总比右边数位上数大1,那么我们把这样的自然数叫做“妙数”.例如:321,6543,98,…都是“妙数”.

(1)若某个“妙数”恰好等于其个位数的153倍,则这个“妙数”为

(2)证明:任意一个四位“妙数”减去任意一个两位“妙数”之差再加上1得到的结果一定能被11整除.

(3)在某个三位“妙数”的左侧放置一个一位自然数m作为千位上的数字,从而得到一新的四位自然数A,且m大于自然数A百位上的数字,否存在一个一位自然数n,使得自然数(9A+n)各数位上的数字全都相同?若存在请求出m和n的值;若不存在,请说明理由.

【答案】(1)765(2)证明见解析(3)m=9,n=4

【解析】

试题分析:(1)设这个“妙数”个位数字为a,根据题意判断“妙数”的尾位数,从而得知这个“妙数”为3位数,列出方程100(x+2)+10(x+1)+x=153x,求解可得;

(2)设四位“妙数”的个位为x、两位“妙数”的个位为y,分别表示出四位“妙数”和两位“妙数”,再将四位“妙数”减去任意一个两位“妙数”之差再加上1的结果除以11判断结果是否为整数即可;

(3)设三位“妙数”的个位为z,可知A=1000m+111z+210,继而可得9A+n=9000m+999z+1890+n=1000(9m+z+1)+800+90+n﹣z,由﹣8n﹣z9、1000(9m+z+1)1000(9×9+9+1)=91000知其百位数一定是8,且该数为5位数,若存在则该数为88888,从而得出即9m+z=87、n﹣z=﹣2,由mz+2知zm﹣2,而z=87﹣9mm﹣2,解之可得m8.9,即可得m值,进一步即可得答案.

试题解析:(1)设这个“妙数”个位数字为a,

若这个“妙数”为4位数,则其个位数字最大为6,根据题意可知这个“妙数”最大为6×153=918,不合题意;

这个“妙数”为3位数,根据题意得:100(x+2)+10(x+1)+x=153x,

解得:x=5,

则这个“妙数”为765,

故答案为:765;

(2)由题意,设四位“妙数”的个位为x,则此数为1000(x+3)+100(x+2)+10(x+1)+x=1111x+3210,

设两位“妙数”的个位为y,则此数为10(y+1)+y=11y+10,

=101x﹣y+291,

x、y为整数,

101x﹣y+291也为整数,

任意一个四位“妙数”减去任意一个两位“妙数”之差再加上1得到的结果一定能被11整除;

(3)设三位“妙数”的个位为z,由题意,得:

A=1000m+100(z+2)+10(z+1)+z=1000m+111z+210,

9A+n=9000m+999z+1890+n

=9000m+1000z+1890+n﹣z

=1000(9m+z+1)+800+90+n﹣z,

m、n是一位自然数,0z9,且z为整数,

﹣8n﹣z9,

9A+n的百位为8,且1000(9m+z+1)1000(9×9+9+1)=91000,

9A+n为五位数,且9A+n=88888,

9m+z=87,n﹣z=﹣2,

mz+2,

zm﹣2,

z=87﹣9mm﹣2,

m8.9,

m是一个自然数,

m=9,

于是z=6,n=4,

答:m=9,n=4.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网