题目内容
如图,抛物线与轴相交于点(﹣1,0)、(3,0),与轴相交于点,点为线段上的动点(不与、重合),过点垂直于轴的直线与抛物线及线段分别交于点、,点在轴正半轴上,=2,连接、.
(1)求抛物线的解析式;
(2)当四边形是平行四边形时,求点的坐标;
(3)过点的直线将(2)中的平行四边形分成面积相等的两部分,求这条直线的解析式.(不必说明平分平行四边形面积的理由)
(1)抛物线的解析式为:;(2)点坐标为或;(3) ①当时,所求直线的解析式为:;②当时,所求直线的解析式为:.
解析试题分析:
(1)将点和点的坐标代入抛物线函数中,可求出未知量,.则可求出该抛物线解析式;(2)由平行四边形的性质可知,,用含未知量的代数式表示的长度。则可得点坐标 ;(3)平行四边形是中心对称图形,其对称中心为两条对角线的交点(或对角线的中点),过对称中心的直线平分平行四边形的面积,因此过点与对称中心的直线平分的面积.求得此直线,首先要求得对称中心的坐标.则两点坐标可确定该直线.
试题解析:
(1)点、在抛物线上,
∴,
解得,,抛物线的解析式为:.
(2)在抛物线解析式中,令,得,.
设直线BC的解析式为,将,坐标代入得:
,解得,,∴.
设点坐标为,则,,
∴
四边形是平行四边形,
∴,
∴,即,
解得或,
∴点坐标为或.
(3)平行四边形是中心对称图形,其对称中心为两条对角线的交点(或对角线的中点),过对称中心的直线平分平行四边形的面积,因此过点与对称中心的直线平分的面积.
①当时,点坐标为,又
设对角线的中点为,则.
设直线的解析式为,将,坐标代入得:
,
解得, ,∴所求直线的解析式为:
练习册系列答案
相关题目