ÌâÄ¿ÄÚÈÝ
ͨ¹ý¶ÔËÕ¿Æ°æ°Ë£¨Ï£©½Ì²ÄÒ»µÀÏ°ÌâµÄ̽Ë÷Ñо¿£¬ÎÒÃÇÖªµÀ£ºÒ»´Îº¯Êýy=x-1µÄͼÏó¿ÉÒÔÓÉÕý±ÈÀýº¯Êýy=xµÄͼÏóÏòÓÒƽÒÆ1¸öµ¥Î»³¤¶ÈµÃµ½ÀàËƵģ¬º¯Êýy=
(k¡Ù0)µÄͼÏóÊÇÓÉ·´±ÈÀýº¯Êýy=
(k¡Ù0)µÄͼÏóÏò×óƽÒÆ2¸öµ¥Î»³¤¶ÈµÃµ½£®Áé»îÔËÓÃÕâһ֪ʶ½â¾öÎÊÌ⣮
Èçͼ£¬ÒÑÖª·´±ÈÀýº¯Êýy=
µÄͼÏóCÓëÕý±ÈÀýº¯Êýy=ax£¨a¡Ù0£©µÄͼÏólÏཻÓÚµãA£¨2£¬2£©ºÍµãB£®
£¨1£©Ð´³öµãBµÄ×ø±ê£¬²¢ÇóaµÄÖµ£»
£¨2£©½«º¯Êýy=
µÄͼÏóºÍÖ±ÏßABͬʱÏòÓÒƽÒÆn£¨n£¾0£©¸öµ¥Î»³¤¶È£¬µÃµ½µÄͼÏó·Ö±ð¼ÇΪC¡äºÍl¡ä£¬ÒÑ֪ͼÏóC¡ä¾¹ýµãM£¨2£¬4£©£®
¢ÙÇónµÄÖµ£»
¢Ú·Ö±ðд³öƽÒƺóµÄÁ½¸öͼÏóC¡äºÍl¡ä¶ÔÓ¦µÄº¯Êý¹Øϵʽ£»
¢ÛÖ±½Óд³ö²»µÈʽ
¡Üax-1µÄ½â¼¯£®
k |
x+2 |
k |
x |
Èçͼ£¬ÒÑÖª·´±ÈÀýº¯Êýy=
4 |
x |
£¨1£©Ð´³öµãBµÄ×ø±ê£¬²¢ÇóaµÄÖµ£»
£¨2£©½«º¯Êýy=
4 |
x |
¢ÙÇónµÄÖµ£»
¢Ú·Ö±ðд³öƽÒƺóµÄÁ½¸öͼÏóC¡äºÍl¡ä¶ÔÓ¦µÄº¯Êý¹Øϵʽ£»
¢ÛÖ±½Óд³ö²»µÈʽ
4 |
x-1 |
£¨1£©°ÑA£¨2£¬2£©´úÈëy=axµÃ2a=2£¬½âµÃa=1£»
¡ß·´±ÈÀýº¯Êýy=
µÄͼÏóÓëÕý±ÈÀýº¯Êýy=xµÄͼÏóµÄ½»µã¹ØÓÚÔµã¶Ô³Æ£¬
¡àBµã×ø±êΪ£¨-2£¬-2£©£»
£¨2£©¢Ùº¯Êýy=
µÄͼÏóÏòÓÒƽÒÆn£¨n£¾0£©¸öµ¥Î»³¤¶È£¬µÃµ½µÄͼÏóC¡äµÄ½âÎöʽΪy=
£¬
°ÑM£¨2£¬4£©´úÈëµÃ4=
£¬½âµÃn=1£»
¢ÚͼÏóC¡äµÄ½âÎöʽΪy=
£»Í¼Ïól¡äµÄ½âÎöʽΪy=x-1£»
¢Û²»µÈʽ
¡Üax-1µÄ½â¼¯ÊÇ£º-1¡Üx£¼1»òx¡Ý3£®
¡ß·´±ÈÀýº¯Êýy=
4 |
x |
¡àBµã×ø±êΪ£¨-2£¬-2£©£»
£¨2£©¢Ùº¯Êýy=
4 |
x |
4 |
x-n |
°ÑM£¨2£¬4£©´úÈëµÃ4=
4 |
2-n |
¢ÚͼÏóC¡äµÄ½âÎöʽΪy=
4 |
x-1 |
¢Û²»µÈʽ
4 |
x-1 |
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿