题目内容

【题目】在平面直角坐标系xOy中,将一块含有45°角的直角三角板如图放置,直角顶点C的坐标为(1,0),顶点A的坐标为(0,2),顶点B恰好落在第一象限的双曲线上,现将直角三角板沿x轴正方向平移,当顶点A恰好落在该双曲线上时停止运动,则此时点C的对应点C′的坐标为(  )

A. ,0) B. (2,0) C. ,0) D. (3,0)

【答案】C

【解析】

解:过点BBDx轴于点D,∵∠ACO+∠BCD=90°,∠OAC+ACO=90°,∴∠OAC=∠BCD,在ACOBCD中,∵∠OAC=∠BCD,∠AOC=∠BDCAC=BC,∴△ACO≌△BCD(AAS),∴OC=BDOA=CD,∵A(0,2),C(1,0),∴OD=3,BD=1,∴B(3,1),∴设反比例函数的解析式为,将B(3,1)代入,∴k=3,∴,∴y=2代入,∴x=,当顶点A恰好落在该双曲线上时,此时点A移动了个单位长度,C也移动了个单位长度,此时点C的对应点C的坐标为(,0).故选C.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网