题目内容
【题目】如图1,点A、O、B依次在直线MN上,现将射线OA绕点O沿顺时针方向以每秒4°的速度旋转,同时射线OB绕点O沿逆时针方向以每秒6°的速度旋转,直线MN保持不动,如图2,设旋转时间为t(0≤t≤60,单位:秒).
(1)当t=3时,求∠AOB的度数;
(2)在运动过程中,当∠AOB第二次达到72°时,求t的值;
(3)在旋转过程中是否存在这样的t,使得射线OB与射线OA垂直?如果存在,请求出t的值;如果不存在,请说明理由.
【答案】(1)150°;(2)t的值为;(3)t的值为9、27或45.
【解析】
(1)将t=3代入求解即可.
(2)根据题意列出方程求解即可.
(3)分两种情况:①当0≤t≤18时,②当18≤t≤60时,分别列出方程求解即可.
(1)当t=3时,∠AOB=180°﹣4°×3﹣6°×3=150°.
(2)依题意,得:4t+6t=180+72,
解得:t.
答:当∠AOB第二次达到72°时,t的值为.
(3)当0≤t≤18时,180﹣4t﹣6t=90,
解得:t=9;
当18≤t≤60时,4t+6t=180+90或4t+6t=180+270,
解得:t=27或t=45.
答:在旋转过程中存在这样的t,使得射线OB与射线OA垂直,t的值为9、27或45.
【题目】在大课间活动中,体育老师随机抽取了七年级甲、乙两班部分女学生进行仰卧起坐的测试,并对成绩进行统计分析,绘制了频数分布表和统计图,请你根据图表中的信息完成下列问题:
分 组 | 频数 | 频率 |
第一组(0≤x<15) | 3 | 0.15 |
第二组(15≤x<30) | 6 | a |
第三组(30≤x<45) | 7 | 0.35 |
第四组(45≤x<60) | b | 0.20 |
(1)频数分布表中a=_____,b=_____,并将统计图补充完整;
(2)如果该校七年级共有女生180人,估计仰卧起坐能够一分钟完成30或30次以上的女学生有多少人?
(3)已知第一组中只有一个甲班学生,第四组中只有一个乙班学生,老师随机从这两个组中各选一名学生谈心得体会,则所选两人正好都是甲班学生的概率是多少?