题目内容
【题目】如图,在Rt△ABC中,∠ACB=90,AD平分∠BAC,过A,C,D三点的圆与斜边AB交于点E,连接DE.
(1)求证:AC=AE;
(2)若AC=6,CB=8,求△ACD的外接圆的直径.
【答案】
(1)证明:∵AD平分∠BAC,
∴∠CAD=∠EAD,
∴ = ,
∴CD=ED
∵∠ACD=90°,
∴AD是⊙O的直径,
∴ = ,
∴AC=AE
(2)在Rt△ABC中,∠ACB=90°,AC=6,BC=8,
∴AB= =10,
BE=10﹣AE=10﹣6=4,
设CD=DE=x,
BD=8﹣x,
在Rt△BDE中.BD2=DE2+BE2
(8﹣x)2+x2=42
x=3,即BD=3,
在Rt△ACD中,AD= =3
【解析】(1)根据角平分线的性质、圆周角、弧、弦之间的关系得到 = ,证明结论;(2)根据勾股定理求出AB,设CD=DE=x,根据勾股定理列出方程,求出x,计算即可.
【考点精析】认真审题,首先需要了解三角形的外接圆与外心(过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心).
【题目】全世界每年都有大量的土地被沙漠吞没,改造沙漠,保护土地资源已成为一项十分紧迫的任务.某地区沙漠原有面积是100万平方千米,为了解该地区沙漠面积的变化情况,进行了连续3年的观察,并将每年年底的观察结果记录如下表:
观察时间 | 该地区沙漠面积(万平方千米) |
第一年年底 | 100.2 |
第二年年底 | 100.4 |
第三年年底 | 100.6 |
预计该地区沙漠的面积将继续按此趋势扩大.
(1)如果不采取措施,那么到第m年年底,该地区沙漠面积将变为多少万平方千米?
(2)如果第5年后采取措施,每年改造0.8万平方千米沙漠(沙漠面积的扩大趋势不变),那么到第n年(n>5)年年底该地区沙漠的面积为多少万平方千米?
(3)在(2)的条件下,第90年年底,该地区沙漠面积占原有沙漠面积的多少?
【题目】如图是一个在平面直角坐标系中从原点开始的回形图,其中回形通道的宽和OA的长都是1.
(1)观察图形填写表格:
点 | 坐标 | 所在象限或坐标轴 |
A | ||
B | ||
C | ||
D | ||
E | ||
F |
(2)在图上将回形图继续画下去(至少再画出4个拐点);
(3)说出回形图中位于第一象限的拐点的横坐标与纵坐标之间的关系;
(4)观察图形,说出(3)中的关系在第三象限中是否存在?