题目内容
【题目】如图,四边形ABCD与四边形CEFG是两个正方形,边长分别为a,b,其中B,C,E在一条直线上,G在线段CD上,三角形AGE的面积为S.
(1)①当a=5,b=3时,求S的值;
②当a=7,b=3时,求S的值;
(2)从以上结果中,请你猜想S与a,b中的哪个量有关?用字母a,b表示S,并对你的猜想进行证明.
【答案】(1)①4.5;②4.5;(2)S=b2,证明见解析
【解析】
(1)①根据S△AEG=S正方形ABCD+S正方形ECGF-S△ABE-S△ADG-S△EFG,即可得出答案;②方法同①;
(2)结论S=b2,根据S△AEG=S正方形ABCD+S正方形ECGF-S△ABE-S△ADG-S△EFG即可证明.
(1)①∵四边形ABCD与四边形CEFG是两个正方形,AB=5,EC=3,
∴DG=CD-CG=5-3=2.
∴S△AEG=S正方形ABCD+S正方形ECGF-S△ABE-S△ADG-S△EFG
=25+9-×8×5-×5×2-×3×3=4.5.
②∵四边形ABCD与四边形CEFG是两个正方形,AB=7,EC=3,
∴DG=CD-CG=7-3=4.
∴S△AEG=S正方形ABCD+S正方形ECGF-S△ABE-S△ADG-S△EFG
=49+9-×10×7-×7×4-×3×3=4.5
(2)结论S=b2.
证明:∵S△AEG=S正方形ABCD+S正方形ECGF-S△ABE-S△ADG-S△EFG
=a2+b2-(a+b)a-a(a-b)-b2
=a2+b2-a2-ab-a2+ab-b2
=b2,
∴S=b2.
练习册系列答案
相关题目