题目内容
【题目】如图,在矩形ABCD中,E,F为BC上两点,且BE=CF,连接AF,DE交于点O.求证:
(1)△ABF≌△DCE;
(2)△AOD是等腰三角形.
【答案】(1)证明见解析;(2)证明见解析.
【解析】
(1)根据矩形的性质可得∠B=∠C=90°,AB=DC,然后求出BF=CE,再利用“边角边”证明△ABF和△DCE全等即可.
(2)根据全等三角形对应角相等可得∠BAF=∠EDC,然后求出∠DAF=∠EDA,然后根据等腰三角形的定义证明即可.
(1)在矩形ABCD中,∠B=∠C=90°,AB=DC,
∵BE=CF,BF=BC﹣FC,CE=BC﹣BE,∴BF=CE.
在△ABF和△DCE中,∵AB=DC,∠B=∠C,BF=CE,
∴△ABF≌△DCE(SAS).
(2)∵△ABF≌△DCE,∴∠BAF=∠EDC.
∵∠DAF=90°﹣∠BAF,∠EDA=90°﹣∠EDC,∴∠DAF=∠EDA.
∴△AOD是等腰三角形.
练习册系列答案
相关题目