题目内容

【题目】证明定理:三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等,已知:

如图,在ABC中,分别作AB边、BC边的垂直平分线,两线相交于点P,分别交AB边、BC边于点E、F.

求证:AB、BC、AC的垂直平分线相交于点P

证明:点P是AB边垂直平线上的一点,

= ).

同理可得,PB=

= (等量代换).

(到一条线段两个端点距离相等的点,在这条线段的

AB、BC、AC的垂直平分线

【答案】PB;PA;垂直平分线上任意一点,到线段两端点的距离相等;PC;垂直平分线上任意一点,到线段两端点的距离相等;PA;PC;点P是AC边垂直平线上的一点;垂直平分线上;相交于点P.

【解析】

试题分析:根据线段垂直平分线的性质可得出PB=PA,同理可得出PA=PC,由此即可得出PA=PC,再根据线段垂直平分线的性质可得出点P是AC边垂直平线上的一点,从而证出结论.

证明:点P是AB边垂直平线上的一点,

PB=PA (垂直平分线上任意一点,到线段两端点的距离相等).

同理可得,PB=PC(垂直平分线上任意一点,到线段两端点的距离相等).

PA=PC(等量代换).

点P是AC边垂直平线上的一点(到一条线段两个端点距离相等的点,在这条线段的垂直平分线上),

AB、BC、AC的垂直平分线相交于点P.

故答案为:PB;PA;垂直平分线上任意一点,到线段两端点的距离相等;PC;垂直平分线上任意一点,到线段两端点的距离相等;PA;PC;点P是AC边垂直平线上的一点;垂直平分线上;相交于点P.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网