题目内容

【题目】如图示,若△ABC内一点P满足∠PAC=∠PBA=∠PCB,则点P为△ABC的布洛卡点.三角形的布洛卡点是法国数学家和教育家克洛尔于1816年首次发现,但他的发现并未被当时的人们所注意,1875年,布洛卡点被一个数学爱好者法国军官布洛卡重新发现,并用他的名字命名.问题:已知在等腰直角三角形DEF中,∠EDF=90°,若点Q为△DEF的布洛卡点,DQ=1,则EQ+FQ=

【答案】
【解析】解 :如图,在等腰直角三角形△DEF中,∠EDF=90,DE=DF,∠1=∠2=∠3,

∴∠1+∠QEF=∠3+∠DFQ=45
∴∠QEF=∠DFQ;sin45°=DF∶EF=1∶
又∵∠2=∠3,
∴△DQF∽△FQE,
∴DQ∶FQ=FQ∶QE=DF∶EF=1∶
∵DQ=1,
∴FQ=,EQ=2,
∴EQ+FQ=2+
由等腰直角三角形的性质得出∠1+∠QEF=∠3+∠DFQ=45,进而得出∠QEF=∠DFQ;sin45°=DF∶EF=1∶,然后判断出△DQF∽△FQE,根据相似三角形对应边成比例得出DQ∶FQ=FQ∶QE=DF∶EF=1∶,进而求出FQ=,EQ=2,从而得出答案。

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网