题目内容

【题目】如图,⊙O是△ABC的外接圆,AE平分∠BAC⊙O于点E,∠ABC的平分线BFAD于点F,交BC于点D

1)求证:BEEF

2)若DE4DF3,求AF的长.

【答案】1)见解析;(2AF.

【解析】

1)通过证明∠6=EBF得到EB=EF

2)先证明△EBD∽△EAB,再利用相似比求出AE,然后计算AE-EF即可得到AF的长.

1)证明:∵AE平分∠BAC

∴∠1=∠4

∵∠1=∠5

∴∠4=∠5

BF平分∠ABC

∴∠2=∠3

∵∠6=∠3+4=∠2+5

即∠6=∠EBF

EBEF

2)解:∵DE4DF3

BEEFDE+DF7

∵∠5=∠4,∠BED=∠AEB

∴△EBD∽△EAB

,即

EA

AFAEEF

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网