ÌâÄ¿ÄÚÈÝ
Èçͼ£¬ÒÑÖªÅ×ÎïÏßy=ax2+bx-3ÓëxÖá½»ÓÚA¡¢BÁ½µã£¬ÓëyÖá½»ÓÚCµã£¬¾¹ýA¡¢B¡¢CÈýµãµÄÔ²µÄÔ²ÐÄM£¨1£¬m£©Ç¡ºÃÔÚ´ËÅ×ÎïÏߵĶԳÆÖáÉÏ£¬¡ÑMµÄ°ë¾¶Îª
£®Éè¡ÑMÓëyÖá½»ÓÚD£®
£¨1£©Çóm¡¢a¡¢bµÄÖµ£»
£¨2£©Èô¶¯µãP´ÓµãC³ö·¢£¬ÑØÏ߶ÎCBÒÔÿÃë2¸öµ¥Î»³¤µÄËÙ¶ÈÔ˶¯£¬¹ýµãP×÷yÖáµÄƽÐÐÏß½»Å×ÎïÏßÓÚQ£®µ±µãPÔ˶¯¼¸Ãëʱ£¬Ï߶ÎPQµÄÖµ×î´ó£¬²¢Çó´ËʱPµã×ø±ê£»
£¨3£©ÔÚ£¨2£©Ìõ¼þÏ£¬µ±Ï߶ÎPQµÄÖµ×î´óʱ£¬ËıßÐÎACQBÃæ»ýÊÇ·ñÒ²×î´ó£¿ËµÃ÷ÀíÓÉ£®
5 |
£¨1£©Çóm¡¢a¡¢bµÄÖµ£»
£¨2£©Èô¶¯µãP´ÓµãC³ö·¢£¬ÑØÏ߶ÎCBÒÔÿÃë2¸öµ¥Î»³¤µÄËÙ¶ÈÔ˶¯£¬¹ýµãP×÷yÖáµÄƽÐÐÏß½»Å×ÎïÏßÓÚQ£®µ±µãPÔ˶¯¼¸Ãëʱ£¬Ï߶ÎPQµÄÖµ×î´ó£¬²¢Çó´ËʱPµã×ø±ê£»
£¨3£©ÔÚ£¨2£©Ìõ¼þÏ£¬µ±Ï߶ÎPQµÄÖµ×î´óʱ£¬ËıßÐÎACQBÃæ»ýÊÇ·ñÒ²×î´ó£¿ËµÃ÷ÀíÓÉ£®
·ÖÎö£º£¨1£©Í¨¹ýÅ×ÎïÏߵĽâÎöʽ£¬Ê×ÏÈÄÜÈ·¶¨µÄÊÇOCµÄ³¤£¬ÒÑÖª¡ÑMµÄ°ë¾¶³¤£¬¹ýM×÷yÖáµÄ´¹Ïߣ¬Í¨¹ý¹¹½¨µÄÖ±½ÇÈý½ÇÐÎÄÜÈ·¶¨µãMµÄ×Ý×ø±ê£»Í¬Àí£¬¹ýM×÷xÖáµÄ´¹Ïߺó¿ÉÇó³öµãBµÄ×ø±ê£¬¶øA¡¢B¹ØÓÚÅ×ÎïÏߵĶԳÆÖá¶Ô³Æ£¨¸ù¾ÝÔ²ºÍÅ×ÎïÏߵĶԳÆÐÔ£¬µãMÕýºÃÔÚÅ×ÎïÏ߶ԳÆÖáÉÏ£©£¬ÔÚÈ·¶¨µãAµÄ×ø±êºó£¬ÀûÓôý¶¨ÏµÊý·¨¼´¿ÉÇó³öa¡¢bµÄÖµ£®
£¨2£©Ê×ÏÈÇó³öÖ±ÏßBCµÄ½âÎöʽ£¬¸ù¾ÝÖ±ÏßBCºÍÅ×ÎïÏߵĽâÎöʽ£¬Ïȱíʾ³öµãP¡¢QµÄ×ø±ê£¬Á½µã×Ý×ø±êµÄ²î¼´ÎªÏ߶ÎPQµÄ³¤£¬¸ù¾ÝËùµÃº¯ÊýµÄÐÔÖʼ´¿ÉµÃ½â£®
£¨3£©ËıßÐÎACQBÖУ¬¿É·Ö×÷Á½²¿·Ö¶Ô´ý£º¡÷ABC¡¢¡÷BCQ£¬Ç°ÕßµÄÃæ»ýÊǶ¨Öµ£¬ÈôËıßÐεÄÃæ»ý×î´ó£¬ÄÇô¡÷BCQµÄÃæ»ý×î´ó£¬¶øÕâ¸öÃæ»ý¿ÉÓÉPQ¡ÁOB£¨µãB¡¢Cºá×ø±ê²îµÄ¾ø¶ÔÖµ£©µÄÒ»°ë£¬OBÊǶ¨Öµ£¬ÏÔÈ»PQ×î´óʱ£¬ËıßÐεÄÃæ»ýÒ²ÊÇ×î´óµÄ£®
£¨2£©Ê×ÏÈÇó³öÖ±ÏßBCµÄ½âÎöʽ£¬¸ù¾ÝÖ±ÏßBCºÍÅ×ÎïÏߵĽâÎöʽ£¬Ïȱíʾ³öµãP¡¢QµÄ×ø±ê£¬Á½µã×Ý×ø±êµÄ²î¼´ÎªÏ߶ÎPQµÄ³¤£¬¸ù¾ÝËùµÃº¯ÊýµÄÐÔÖʼ´¿ÉµÃ½â£®
£¨3£©ËıßÐÎACQBÖУ¬¿É·Ö×÷Á½²¿·Ö¶Ô´ý£º¡÷ABC¡¢¡÷BCQ£¬Ç°ÕßµÄÃæ»ýÊǶ¨Öµ£¬ÈôËıßÐεÄÃæ»ý×î´ó£¬ÄÇô¡÷BCQµÄÃæ»ý×î´ó£¬¶øÕâ¸öÃæ»ý¿ÉÓÉPQ¡ÁOB£¨µãB¡¢Cºá×ø±ê²îµÄ¾ø¶ÔÖµ£©µÄÒ»°ë£¬OBÊǶ¨Öµ£¬ÏÔÈ»PQ×î´óʱ£¬ËıßÐεÄÃæ»ýÒ²ÊÇ×î´óµÄ£®
½â´ð£º½â£º£¨1£©×÷MN¡ÍCDÓÚN£¬MH¡ÍABÓÚH£¬·Ö±ðÁ¬½ÓMC¡¢MB£®
¡ß¡ÑMµÄ°ë¾¶Îª
£¬xM=1£¬
¡àCN=2£¬ON=1£¬BH=2£¬OB=3£»
µÃm=-1£®
¡ßÔ²ÐÄM£¨1£¬m£©Ç¡ºÃÔÚ´ËÅ×ÎïÏߵĶԳÆÖáÉÏ£¬
¡àOA=1£¬A£¨-1£¬0£©¡¢B£¨3£¬0£©£»
´úÈëy=ax2+bx-3µÃ£º
£¬
½âµÃ
£®
ËùÒÔm=-1£¬a=1£¬b=-2£®
£¨2£©ÉèµãPÔ˶¯µÄʱ¼äΪtÃ룬ÔòCP=2t£»
ÓÖ¡ßOC=OB£¬
¡à¡ÏOBC=¡ÏOCB=45¡ã£¬
¡àxP=
t£»
Ò×Öª£¬Ö±ÏßBCµÄ½âÎöʽΪ y=x-3
¡àµãP£¨
t£¬
t-3£©£®
¡ßPQ¡ÎyÖᣬ
¡àQ£¨
t£¬2t2-2
t-3£©£®
PQ=
t-3-£¨2t2-2
t-3£©=-2t2+3
t=-2£¨t-
£©2+
£®
µ±µãPÔ˶¯
Ã룬Ï߶ÎPQµÄÖµ×î´ó£»
¹Ê´ËʱµãPµÄ×ø±êΪ£¨
£¬-
£©£®
£¨3£©µ±Ï߶ÎPQµÄÖµ×î´óÊÇ£¬ËıßÐÎACQBµÄÃæ»ý×î´ó£®ÀíÓÉ£º
SËıßÐÎACQB=S¡÷ABC+S¡÷CQB£¬
ÆäÖУ¬S¡÷ABC=
AB¡ÁOC=
¡Á4¡Á3=6£¬Îª¶¨Öµ£»
¶øS¡÷CQB=
¡Á|xB-xC|¡ÁPQ=
¡Á3¡ÁPQ=
PQ
µ±Ï߶ÎPQµÄÖµ×î´óʱ£¬¡÷CQBµÄÃæ»ý×î´ó£¬¼´ËıßÐÎABCQµÄÃæ»ý×î´ó£®
¡ß¡ÑMµÄ°ë¾¶Îª
5 |
¡àCN=2£¬ON=1£¬BH=2£¬OB=3£»
µÃm=-1£®
¡ßÔ²ÐÄM£¨1£¬m£©Ç¡ºÃÔÚ´ËÅ×ÎïÏߵĶԳÆÖáÉÏ£¬
¡àOA=1£¬A£¨-1£¬0£©¡¢B£¨3£¬0£©£»
´úÈëy=ax2+bx-3µÃ£º
|
½âµÃ
|
ËùÒÔm=-1£¬a=1£¬b=-2£®
£¨2£©ÉèµãPÔ˶¯µÄʱ¼äΪtÃ룬ÔòCP=2t£»
ÓÖ¡ßOC=OB£¬
¡à¡ÏOBC=¡ÏOCB=45¡ã£¬
¡àxP=
2 |
Ò×Öª£¬Ö±ÏßBCµÄ½âÎöʽΪ y=x-3
¡àµãP£¨
2 |
2 |
¡ßPQ¡ÎyÖᣬ
¡àQ£¨
2 |
2 |
PQ=
2 |
2 |
2 |
3
| ||
4 |
9 |
4 |
µ±µãPÔ˶¯
3
| ||
4 |
¹Ê´ËʱµãPµÄ×ø±êΪ£¨
3 |
2 |
3 |
2 |
£¨3£©µ±Ï߶ÎPQµÄÖµ×î´óÊÇ£¬ËıßÐÎACQBµÄÃæ»ý×î´ó£®ÀíÓÉ£º
SËıßÐÎACQB=S¡÷ABC+S¡÷CQB£¬
ÆäÖУ¬S¡÷ABC=
1 |
2 |
1 |
2 |
¶øS¡÷CQB=
1 |
2 |
1 |
2 |
3 |
2 |
µ±Ï߶ÎPQµÄÖµ×î´óʱ£¬¡÷CQBµÄÃæ»ý×î´ó£¬¼´ËıßÐÎABCQµÄÃæ»ý×î´ó£®
µãÆÀ£º´ËÌâÖ÷Òª¿¼²éµÄÊÇ£ºº¯Êý½âÎöʽµÄÈ·¶¨¡¢Ô²µÄ¶Ô³ÆÐÔ¡¢¹´¹É¶¨ÀíµÄÓ¦ÓÃÒÔ¼°Í¼ÐÎÃæ»ýµÄ½â·¨µÈÖصã֪ʶ£»ÔÚ½â´ðÀàËÆ×îºóÒ»ÌâµÄÃæ»ýÎÊÌâʱ£¬ºÏÀíÀûÓÃͼÐμäÃæ»ýµÄºÍ²î¹ØϵÊdz£Óõķ½·¨£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿