题目内容
计算题:
①(a-3b2)-4•(a-2b-3)3(结果只含正整数指数幂)
②先化简
÷
-
(再取一个你认为合适的a的值代入求值)
③已知:
=
+
,求A、B的值.
④解方程
+
=
.
①(a-3b2)-4•(a-2b-3)3(结果只含正整数指数幂)
②先化简
| 2a+1 |
| a2-1 |
| a2-a |
| a2-2a+1 |
| 1 |
| a+1 |
③已知:
| x+3 |
| (x-2)2 |
| A |
| x-2 |
| B |
| (x-2)2 |
④解方程
| 2 |
| x+1 |
| 3 |
| x-1 |
| 6 |
| x2-1 |
分析:①先算乘方,再根据单项式乘以单项式的法则进行计算即可;
②先把除法变成乘法,同时把分式的分子和分母分解因式,约分后计算减法即可;
③先把等式的右边通分,化成一个分式,再根据对应的系数相等得出关于A、B的方程组,求出即可;
④方程两边都乘以(x+1)(x-1)把分式方程变成整式方程,求出整式方程的解,再进行检验即可
②先把除法变成乘法,同时把分式的分子和分母分解因式,约分后计算减法即可;
③先把等式的右边通分,化成一个分式,再根据对应的系数相等得出关于A、B的方程组,求出即可;
④方程两边都乘以(x+1)(x-1)把分式方程变成整式方程,求出整式方程的解,再进行检验即可
解答:解:①(a-3b2)-4•(a-2b-3)3
=a12b-8•a-6b-9
=a6b-17
=
;
②
÷
-
=
•
-
=
-
=
=
=
,
∵a2-1≠0,a2-a≠0,
∴a≠±1,a≠0,
∴a=4,
当a=4时,原式=
;
③
=
+
,
=
=
,
A=1,-2A+B=3,
解得:A=1,B=5;
④
+
=
,
方程两边都乘以(x+1)(x-1)得:2(x-1)+3(x+1)=6,
解这个方程得:2x-2+3x+3=6,
5x=5,
x=1,
检验:∵把x=1代入(x+1)(x-1)=0,
∴x=1是原方程的增根,
即原方程无解.
=a12b-8•a-6b-9
=a6b-17
=
| a6 |
| b17 |
②
| 2a+1 |
| a2-1 |
| a2-a |
| a2-2a+1 |
| 1 |
| a+1 |
=
| 2a+1 |
| (a+1)(a-1) |
| (a-1)2 |
| a(a-1) |
| 1 |
| a+1 |
=
| 2a+1 |
| a(a+1) |
| 1 |
| a+1 |
=
| 2a+1-a |
| a(a+1) |
=
| a+1 |
| a(a+1) |
=
| 1 |
| a |
∵a2-1≠0,a2-a≠0,
∴a≠±1,a≠0,
∴a=4,
当a=4时,原式=
| 1 |
| 4 |
③
| x+3 |
| (x-2)2 |
| A |
| x-2 |
| B |
| (x-2)2 |
| x+3 |
| (x-2)2 |
| A(x-2)+B |
| (x-2)2 |
| x+3 |
| (x-2)2 |
| Ax+(-2A+B) |
| (x-2)2 |
A=1,-2A+B=3,
解得:A=1,B=5;
④
| 2 |
| x+1 |
| 3 |
| x-1 |
| 6 |
| x2-1 |
方程两边都乘以(x+1)(x-1)得:2(x-1)+3(x+1)=6,
解这个方程得:2x-2+3x+3=6,
5x=5,
x=1,
检验:∵把x=1代入(x+1)(x-1)=0,
∴x=1是原方程的增根,
即原方程无解.
点评:本题考查了解分式方程分式的化简求值,负整数指数幂等知识点,主要考查学生的化简能力和计算能力,注意:解分式方程一定要进行检验.
练习册系列答案
相关题目