题目内容
如图,已知二次函数y=ax2+bx+c的图象经过A(1,0)、B(5,0)、C(0,5)三点。
(1)求这个二次函数的解析式;
(2)过点C的直线y=kx+b与这个二次函数的图象相交于点E(4,m),请求出△CBE的面积S的值。
(1)求这个二次函数的解析式;
(2)过点C的直线y=kx+b与这个二次函数的图象相交于点E(4,m),请求出△CBE的面积S的值。
解:(1)∵二次函数y=ax2+bx+c的图象经过A(1,0)、B(5,0)、C(0,5)三点,
∴y=a(x-1)(x-5),把C(0,5)代入得:5=5a,解得:a=1,
∴y=(x-1)(x-5),y=x2-6x+5,
∴二次函数的解析式是y=x2-6x+5.
(2)∵y= x2-6x+5,∴当x=4时,m=16-24+5=-3,∴E(4,-3),
设直线EC的解析式是y=kx+b, 把E(4,-3),C(0,5)代入得:,解得:k=-2, b=5,
∴直线EC的解析式是y=-2x+5,
当y=0时0=-2x+5,解得:x=,∴M的坐标是(,0) ∴BF=5-=,
∴S△CBE=S△CBF+S△BFE=××5+××3="10" ,
答:△CBE的面积S的值是10.
∴y=a(x-1)(x-5),把C(0,5)代入得:5=5a,解得:a=1,
∴y=(x-1)(x-5),y=x2-6x+5,
∴二次函数的解析式是y=x2-6x+5.
(2)∵y= x2-6x+5,∴当x=4时,m=16-24+5=-3,∴E(4,-3),
设直线EC的解析式是y=kx+b, 把E(4,-3),C(0,5)代入得:,解得:k=-2, b=5,
∴直线EC的解析式是y=-2x+5,
当y=0时0=-2x+5,解得:x=,∴M的坐标是(,0) ∴BF=5-=,
∴S△CBE=S△CBF+S△BFE=××5+××3="10" ,
答:△CBE的面积S的值是10.
(1)根据二次函数的图象经过A(1,0)、B(5,0)、C(0,5)三点,得到y=a(x-1)(x-5),把C的坐标代入就能求出a的值,即可得出二次函数的解析式;
(2)把E的坐标代入抛物线即可求出m的值,设直线EC的解析式是y=kx+b,把E、C的坐标代入就能求出直线EC,求直线EC与X轴的交点坐标,过E作EN⊥X轴于N,根据点的坐标求出△CBM和△BME的面积,相加即可得到答案.
(2)把E的坐标代入抛物线即可求出m的值,设直线EC的解析式是y=kx+b,把E、C的坐标代入就能求出直线EC,求直线EC与X轴的交点坐标,过E作EN⊥X轴于N,根据点的坐标求出△CBM和△BME的面积,相加即可得到答案.
练习册系列答案
相关题目