题目内容
【题目】如图,在面积为6的Rt△ABC中,∠C=90°,AC=4,AB=5,BC边上有一动点P,当点P到AB边的距离等于PC的长时,那么点P到端点B的距离等于( )
A. B. C. D.
【答案】B
【解析】
直接利用全等三角形的判定和性质以及结合勾股定理得出PB的长.
解:∵点P到AB边的距离等于PC的长,
∴AP是∠CAB的平分线,
∴∠CAP=∠DAP,
在△CAP和△DAP中,
,
∴△CAP≌△DAP(AAS),
∴AC=AD=4,
∵∠C=90°,AC=4,AB=5,
∴BC=3,BD=1,
设PB=x,则PC=PD=3﹣x,
在Rt△PDB中,
x2=(3﹣x)2+12,
解得:x=,
即点P到端点B的距离等于 .
故选:B.
练习册系列答案
相关题目
【题目】小丽妈妈在网上做淘宝生意,专门销售女式鞋子,一次,小丽发现一个进货单上的一个信息是:A款鞋的进价比B款鞋进价多20元,花500元进A款鞋的数量和花400元进B款鞋的数量相同.
(1)问A、B款鞋的进价分别是多少元?
(2)小丽在销售单上记录了两天的数据如表:
日期 | A款女鞋销量 | B款女鞋销量 | 销售总额 |
6月1日 | 12双 | 8双 | 2240元 |
6月2日 | 8双 | 10双 | 1960元 |
请问两种鞋的销售价分别是多少?
(3)小丽妈妈说:“两款鞋的利润率相同”,请通过计算,结合(1)(2)所给信息,判断小丽妈妈的说法是否正确,如果正确,请说明理由;如果错误,能否只调整其中一款的售价,使得两款鞋的利润率相同?能否同时调整两款的售价,使得两款鞋的利润率相同?请说明理由.