题目内容
如图,在△ABC中,∠C=90°,∠A=30°,AC=6,点P是线段AC上的一动点,作PD⊥AC,垂足为P,交AB于点D,设AP=t(0<t<6).设△APD关于直线PD的对称的图形与四边形BCPD重叠部分的面积为S.
⑴点A关于直线PD的对称点A′与点C重合时,t =________;
⑵求S与t的函数关系式.
【答案】
(1)3
(2)当时,;当时.
【解析】
试题分析:⑴点关于直线的对称点与点重合时,垂直平分这时=t =3
(2)当时关于直线PD的对称的图形与四边形重叠部分的面积为.就是的面积.当时,.
试题解析:(1)
(2)∵
∴
在直角三角形中,, ,∴
由勾股定理得,
当时,,
当时,
,由勾股定理得:
考点:1.直角三角形的性质. 2.轴对称的性质.
练习册系列答案
相关题目