题目内容

如图,在△ABC中,∠ACB=90º,AC=3,BC=4.D是BC边上一点,直线DE⊥BC于D,交AB于E,CF//AB交直线DE于F.设CD=x.

(1)当x取何值时,四边形EACF是菱形?请说明理由;

(2)当x取何值时,四边形EACF的面积等于3?

 

【答案】

 

(1)见解析

(2)见解析

【解析】(1)由题意知四边形EACF为平行四边形,

欲使其为菱形,需要临边相等,根据题意证得△BDE∽△CDF,根据对应边成比例得,即可得到结果;

(2)根据面积公式即可得到关于x的方程,解出即可。

解:(1)由题意知四边形EACF为平行四边形,

欲使其为菱形,需要CF=AC=3.

由AC=2,BC=3得AB=5,

又AE=CF=3,故BE=2.

根据已知可得△BDE∽△CDF,

,即,解得x=

即当x=时四边形EACF为菱形.

(2)由S=(AC+ED)·DC=×3x=3

解得x=2,即x=2时,四边形EACF面积为3.

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网