题目内容

(1)如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.求证:CE=CF;

(2)如图2,在正方形ABCD中,E是AB上一点,G是AD上一点,如果∠GCE=45°,请你利用(1)的结论证明:GE=BE+GD;
(3)运用(1)(2)解答中所积累的经验和知识,完成下题:
如图3,在直角梯形ABCD中,AD∥BC,(BC>AD),∠B=90°,AB=BC,E是AB上一点,且∠DCE=45°,BE=4,DE=10,求直角梯形ABCD的面积.
(1) (2)见解析        (3)108

(1)证明:∵四边形是ABCD正方形,
∴BC=CD,∠B=∠CDF=90°,
∵BE=DF,∴△CBE≌△CDF(SAS).
∴CE=CF.
(2)证明:如图①,延长AD至F,使DF=BE,连接CF.

由(1)知△CBE≌△CDF,
∴∠BCE=∠DCF.
∴∠BCE+∠ECD=∠DCF+∠ECD,
即∠ECF=∠BCD=90°,又∠GCE=45°,
∴∠GCF=∠GCE=45°.
∵CE=CF,GC=GC,
∴△ECG≌△FCG.
∴GE=GF,
∴GE=GF=DF+GD=BE+GD.
(3)解:如图②,过C作CG⊥AD,交AD延长线于G.

在直角梯形ABCD中,
∵AD∥BC,
∴∠A=∠B=90°,
又∵∠CGA=90°,AB=BC,
∴四边形ABCG为正方形.
∴AG=BC.
∵∠DCE=45°,
根据(1)(2)可知,ED=BE+DG.
∴10=4+DG,即DG=6.
设AB=x,则AE=x-4,AD=x-6,
在Rt△AED中,
∵DE2=AD2+AE2
即102=(x-6)2+(x-4)2.
解这个方程,得:x=12或x=-2(舍去).
∴AB=12.
∴S梯形ABCD (AD+BC)·AB
×(6+12)×12=108.
即梯形ABCD的面积为108.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网