题目内容
【题目】如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于点E,垂足为F,连接CD,BE
(1)求证:CE=AD
(2)若D为AB的中点,则∠A的度数满足什么条件时,四边形BECD是正方形?请说明理由.
【答案】(1)见解析;(2) 当∠A=45°时,四边形BECD是正方形,理由见解析.
【解析】分析:(1)先求出四边形ADEC是平行四边形,根据平行四边形的性质推出即可;
(2)求出四边形BECD是平行四边形,根据直角三角形的斜边上的中线求出 CD=BD,根据菱形的判定,和正方形的判定推出即可.
详解:(1)证明:∵DE⊥BC,
∴∠DFB=90°,
∵∠ACB=90°,
∴∠ACB=∠DFB,
∴AC∥DE,
∵MN∥AB,即CE∥AD,
∴四边形ADEC是平行四边形,
∴CE=AD;
(2)解:当∠A=45°时,四边形BECD是正方形,
理由如下:∵∠ACB=90°,∠A=45°,
∴∠ABC=∠A=45°,
∴AC=BC,
∵D为BA中点,
∴CD⊥AB,AD=BD
∴∠CDB=90°,
∵CE=AD,
∴BD=CE,
∵BD∥CE,
∴四边形BECD是平行四边形,
∵∠ACB=90°,D为AB中点,
∴CD=BD,
∴四边形BECD是菱形;
∴四边形BECD是正方形,
即当∠A=45°时,四边形BECD是正方形.
练习册系列答案
相关题目