题目内容
【题目】如图,是△ABC的外接圆,于F,D为的中点,E是BA延长线上一点,,则∠CAD等于( )
A.B.C.D.
【答案】C
【解析】
由于D是弧AC的中点,可知∠ABC=2∠ACD;由于半径AO⊥BC,由垂径定理易证得AB=AC,即∠ACB=∠ABC=2∠ACD,由圆内接四边形的性质知:∠BCD=∠DAE=114°,由此可求出∠ACD的度数;而∠DAC和∠DCA是等弧所对的圆周角,则∠DAC=∠DCA,由此得解.
∵AO⊥BC,且AO是⊙O的半径,
∴AO垂直平分BC,
∴AB=AC,即∠ABC=∠ACB,
∵D是的中点,
∴∠ABC=2∠DCA=2∠DAC,
∴∠ACB=2∠DCA,
∵四边形ABCD内接于⊙O,
∴∠BCD=∠DAE=114°,
∴∠ACB+∠DCA=114°,
即3∠DCA=114°,
∴∠CAD=∠DCA=38°.
故选:C.
练习册系列答案
相关题目
【题目】由于新冠肺炎影响,全国开展了“停课不停学”线上教学,为了解学生在家学习情况,五月7日开学后,某中学1200名学生参加了入学摸底测试,为了了解本次测试成绩情况,王老师从中抽取了部分学生的数学成绩(得分取整数,满分为100分)作为样本进行统计,并制作了如图频数分布表和频数分布直方图(不完整且局部污损,其中“■”表示被污损的数据).请解答下列问题:
成绩分组 | 频数 | 频率 |
50≤x<60 | 8 | 0.16 |
60≤x<70 | 12 | a |
70≤x<80 | ■ | 0.5 |
80≤x<90 | 3 | 0.06 |
90≤x≤100 | b | c |
合计 | ■ | 1 |
(1)写出a,b,c的值;
(2)请估计这1200名学生中有多少人的成绩不低于70分;
(3)在选取的样本中,从成绩是80分以上(含80分)的同学中随机抽取两名同学参加学习经验分享活动,求所抽取的2名同学来自同一组的概率.