题目内容

如图,已知梯形ABCDADBCAFDCE,交BC的延长线于F.

 (1)若∠B+∠DCF=180°.求证:四边形ABCD是等腰梯形;

(2)若E是线段DC的中点,CFBC=1∶3,AD=6,求梯形ABCD中位线的长

9m798

.

 (1)∵∠DCB+∠DCF=180°,                                          (1分)

又∵∠B+∠DCF=180°,

∴∠B=∠DCB.                                                       (2分)

∵四边形ABCD是梯形,

∴四边形ABCD是等腰梯形.                                             (3分)

9m798 

(2)∵ADBC

∴∠DAE=∠F.                                                       (4分)

E是线段CD的中点,∴DECE.

又∵∠DEA=∠FEC

∴△ADE≌△FCE.                                                    (5分)

ADCF.                                                          (6分)

CFBC=1∶3,∴ADBC=1∶3.

AD=6,∴BC=18.                                                  (7分)

∴ 梯形ABCD的中位线是(18+6)÷2=12.                                (8分)

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网