题目内容
【题目】如图1,AB=AC,EF=EG,△ABC≌△EFG,AD⊥BC于点D,EH⊥FG于点H
(1) 直接写出AD、EH的数量关系:___________________
(2) 将△EFG沿EH剪开,让点E和点C重合
① 按图2放置△EHG,将线段CD沿EH平移至HN,连接AN、GN,求证:AN⊥GN
② 按图3放置△EHG,B、C(E)、H三点共线,连接AG交EH于点M.若BD=1,AD=3,求CM的长度
【答案】(1)AD=EH;(2)见解析;(3)CM=2.
【解析】
(1)由△ABC≌△EFG,可知面积相等,利用面积公式可得高相等;
(2)如图所示,设AN、CH交于点P,CH、NG交于点O,由CD平移到NH可知四边形CDNH为平行四边形,所以CH=DN=AD,可得出△AND为等腰三角形,再由GH=CD=NH可得出△GHN为等腰三角形,由于两个等腰三角形顶角相等,可推出底角相等,在△OPN和△OGH中,可由∠OPN=∠PND=∠NGH,可推出∠PNO=90°,则AN⊥GN;
(3由AD⊥BH,GH⊥BH,可得AD∥GH,所以,再由DH=DC+EH=1+3=4,
可求出DM=3,∴CM=3-1=2.
解:(1)∵△ABC≌△EFG,
∴BC=FG,
∴
∴AD=EH
(2)如图所示,设AN、CH交于点P,CH、NG交于点O
CD平移到NH可得四边形CDNH为平行四边形
∴CH=DN,∠CDN=∠CHN,DN∥CH
又∵EH=AD,∴AD=DN,即△AND为等腰三角形
∵GH=CD=NH,∴△GHN为等腰三角形,
∵∠ADN=∠ADC+∠CDN=90°+∠CDN
∠NHG=∠CHG+∠CHN=90°+∠CHN
而∠CDN=∠CHN
∴∠ADN=∠NHG,
∴,
∴∠AND=∠NGH
又∵DN∥CH,∴∠AND=∠NPH,∴∠NGH=∠NPH
在△OPN和△OGH中
∠NPH=∠NGH,∠PON=∠GOH,
∴∠PNO=∠OGH=90°,
∴AN⊥GN
(3)由△ABC≌△EFG可得CD=BD=1,EH=AD=3
∵AD⊥BH,GH⊥BH
∴AD∥GH,∴,∴
又∵DH=DC+EH=1+3=4
∴DM=3,
∴CM=DM-DC=3-1=2.