题目内容
【题目】如图,在正方形ABCD中,点E在对角线AC上,点F在边BC上,连接BE、DF,DF交对角线AC于点G,且DE=DG.
(1)求证:AE=CG;
(2)试判断BE和DF的位置关系,并说明理由.
【答案】(1)证明见解析;(2)BE∥DF,理由见解析.
【解析】
试题分析:(1)先证∠AED=∠CGD,再证明△ADE≌△CDG,根据全等三角形的对应边相等即可得出结论;
(2)先证明△AEB≌△CGD,得出对应角相等∠AEB=∠CGD,得出∠AEB=∠EGF,即可证出平行线.
试题解析:(1)在正方形ABCD中,
∵AD=CD,
∴∠DAE=∠DCG,
∵DE=DG,
∴∠DEG=∠DGE,
∴∠AED=∠CGD.
在△AED和△CGD中,
∴△AED≌△CGD(AAS),
∴AE=CG.
(2)BE∥DF,理由如下:
在正方形ABCD中,AB∥CD,
∴∠BAE=∠DCG.
在△AEB和△CGD中,
∴△AEB≌△CGD(SAS),
∴∠AEB=∠CGD.
∵∠CGD=∠EGF,
∴∠AEB=∠EGF,
∴BE∥DF.
练习册系列答案
相关题目