题目内容
(1)已知恒等式x3-x2-x+1=(x-1)(x2+kx-1),求k的值;
(2)若x是整数,求证:
是整数.
(2)若x是整数,求证:
x3-x2-x+1 |
x2-2x+1 |
(1)由题设知,(x-1)(x2+kx-1)=x3+(k-1)x2-(k+1)x+1,
所以x3-x2-x+1=x3+(k-1)x2-(k+1)x+1,
从而有k-1=-1,-k-1=-1,
解得k=0.
故所求k的值为0;
(2)由(1)知k=0,则x3-x2-x+1=(x-1)(x2-1)=(x-1)2(x+1),
∴
=
=x+1.
又∵x是整数,
∴x+1是整数.
故
是整数.
所以x3-x2-x+1=x3+(k-1)x2-(k+1)x+1,
从而有k-1=-1,-k-1=-1,
解得k=0.
故所求k的值为0;
(2)由(1)知k=0,则x3-x2-x+1=(x-1)(x2-1)=(x-1)2(x+1),
∴
x3-x2-x+1 |
x2-2x+1 |
(x-1)2(x+1) |
(x-1)2 |
又∵x是整数,
∴x+1是整数.
故
x3-x2-x+1 |
x2-2x+1 |
练习册系列答案
相关题目