题目内容

【题目】如图,DE是△ABC的中位线,过点C作CF∥BD交DE的延长线于点F.
(1)求证:DE=EF.
(2)分别连结DC、AF,若AC=BC,试判断四边形ADCF的形状,并说明理由.

【答案】
(1)证明:∵DE是△ABC的中位线,

∴E为AC中点,

∴AE=EC,

∵CF∥BD,

∴∠ADE=∠F,

在△ADE和△CFE中,

∴△ADE≌△CFE(AAS),

∴DE=FE.


(2)解:四边形ADCF是矩形.

理由:∵DE=FE,AE=AC,

∴四边形ADCF是平行四边形,

∴AD=CF,

∵AD=BD,

∴BD=CF,

∴四边形DBCF为平行四边形,

∴BC=DF,

∵AC=BC,

∴AC=DF,

∴平行四边形ADCF是矩形.


【解析】(1)首先根据三角形的中位线定理得出AE=EC,然后根据CF∥BD得出∠ADE=∠F,继而根据AAS证得△ADE≌△CFE,最后根据全等三角形的性质即可推出EF=DE;(2)首先证得四边形ADCF是平行四边形、四边形DBCF也为平行四边形,从而得到BC=DF,然后根据AC=BC得到AC=DF,从而得到四边形ADCF是矩形.
【考点精析】解答此题的关键在于理解三角形中位线定理的相关知识,掌握连接三角形两边中点的线段叫做三角形的中位线;三角形中位线定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网