题目内容
【题目】如图,已知直线y=x与双曲线y=(k>0)交于A、B两点,点B的坐标为(﹣4,﹣2),C为双曲线y=(k>0)上一点,且在第一象限内,若△AOC的面积为6,则点C的坐标为 .
【答案】(2,4)或(8,1)
【解析】
试题分析:把点B的坐标代入反比例函数解析式求出k值,再根据反比例函数图象的中心对称性求出点A的坐标,然后过点A作AE⊥x轴于E,过点C作CF⊥x轴于F,设点C的坐标为(a,),然后根据S△AOC=S△COF+S梯形ACFE﹣S△AOE列出方程求解即可得到a的值,从而得解.
解:∵点B(﹣4,﹣2)在双曲线y=上,
∴=﹣2,
∴k=8,
根据中心对称性,点A、B关于原点对称,
所以,A(4,2),
如图,过点A作AE⊥x轴于E,过点C作CF⊥x轴于F,设点C的坐标为(a,),
若S△AOC=S△COF+S梯形ACFE﹣S△AOE,
=×8+×(2+)(4﹣a)﹣×8,
=4+﹣4,
=,
∵△AOC的面积为6,
∴=6,
整理得,a2+6a﹣16=0,
解得a1=2,a2=﹣8(舍去),
∴==4,
∴点C的坐标为(2,4).
若S△AOC=S△AOE+S梯形ACFE﹣S△COF=,
∴=6,
解得:a=8或a=﹣2(舍去)
∴点C的坐标为(8,1).
故答案为:(2,4)或(8,1).
练习册系列答案
相关题目