题目内容

精英家教网已知:如图,在△ABC中,AB=3,AC=2,能否在AC上(不同于A,C)找到点D,过点D作DE∥AB交于BC于E,过点E作EF∥AC交AB于F,连接FD,将△ABC分割成四个相似的小三角形,但其中至少有两个小三角形的相似比不等于1?若能,求出点D位置;若不能,请说明理由.
分析:在AC上取点D,过点D作∠ADF=∠B,画出草图,找到相应的对应点,根据对应边成比例求得AD的长即可.
解答:精英家教网解:∵∠ADF=∠B,∠A=∠A.
∴△ADF∽△ABC,
∴AD:AF=AB:AC,
设AD=3x,
∴CD=2-3x,
∴AF=2x,
∴FB=3-2x,
∵∠A=∠CDE=∠DEF=∠EFB,
∠ADF=∠DEC=∠DFE=∠B,
∴△ADF∽△DEC∽△EFD∽△FBE,
由AD:AF=BF:EF,
3x:2x=(3-2x):3x,
x=
6
13

∴AD=3x=
18
13
点评:考查相似三角形的画法及性质的应用;判定出4个相似三角形的对应点是解决本题的突破点.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网