题目内容

如图,在△ABC中,∠A=90°,P是BC上一点,且DB=DC,过BC上一点P,作PE⊥AB于E,PF⊥DC于F,已知:AD:DB=1:3,BC=4
6
,则PE+PF的长是(  )
A.4
6
B.6C.4
2
D.2
6

(1)作PM⊥AC于点M,可得矩形AEPM
∴PE=AM,利用DB=DC得到∠B=∠DCB
∵PMAB.
∴∠B=∠MPC
∴∠DCB=∠MPC
又∵PC=PC.∠PFC=∠PMC=90°
∴△PFC≌△CMP
∴PF=CM
∴PE+PF=AC
∵AD:DB=1:3
∴可设AD=x,DB=3x,那么CD=3x,AC=2
2
x,BC=2
6
x
∵BC=4
6

∴x=2
∴PE+PF=AC=2
2
×2=4
2


(2)连接PD,PD把△BCD分成两个三角形△PBD,△PCD,
S△PBD=
1
2
BD•PE,
S△PCD=
1
2
DC•PF,
S△BCD=
1
2
BD•AC,
所以PE+PF=AC=2
2
×2=4
2

故选C.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网