题目内容

【题目】如图,ABO的直径,PBA延长线上一点,CGO的弦PCAABCCGAB,垂足为D

1)求证:PCO的切线;

2)求证:

3)过点AAEPCO于点E,交CD于点F,连接BE,若sinPCF5,求BE的长.

【答案】(1)见解析;(2)BE=12.

【解析】

(1)连接OC,由PC切⊙O于点C,得到OC⊥PC,于是得到∠PCA+∠OCA=90°,由AB为⊙O的直径,得到∠ABC+∠OAC=90°,由于OC=OA,证得∠OCA=∠OAC,于是得到结论;
(2)由AE∥PC,得到∠PCA=∠CAF根据垂径定理得到弧AC=AG,于是得到∠ACF=∠ABC,由于∠PCA=∠ABC,推出∠ACF=∠CAF,根据等腰三角形的性质得到CF=AF,在Rt△AFD中,AF=5,sin∠FAD=,求得FD=3,AD=4,CD=8,在Rt△OCD中,设OC=r,根据勾股定理得到方程r2=(r-4)2+82,解得r=10,得到AB=2r=20,由于AB为⊙O的直径,得到∠AEB=90°,在Rt△ABE中,由sin∠EAD=,得到,于是求得结论.

(1)证明:连接OC,

∵PC切⊙O于点C,

∴OC⊥PC,

∴∠PCO=90°,

∴∠PCA+∠OCA=90°,

∵AB为⊙O的直径,

∴∠ACB=90°,

∴∠ABC+∠OAC=90°,

∵OC=OA,

∴∠OCA=∠OAC,

∴∠PCA=∠ABC;

(2)解:∵AE∥PC,

∴∠PCA=∠CAF,

∵AB⊥CG,

∴弧AC=AG

∴∠ACF=∠ABC,

∵∠PCA=∠ABC,

∴∠ACF=∠CAF,

∴CF=AF,

∵CF=5,

∴AF=5,

∵AE∥PC,

∴∠FAD=∠P,

∵sin∠P=

∴sin∠FAD=

在Rt△AFD中,AF=5,sin∠FAD=

∴FD=3,AD=4,∴CD=8,

在Rt△OCD中,设OC=r,

∴r2=(r﹣4)2+82

∴r=10,

∴AB=2r=20,

∵AB为⊙O的直径,

∴∠AEB=90°,在Rt△ABE中,

∵sin∠EAD=,∴

∵AB=20,

∴BE=12.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网