题目内容

【题目】如图:已知等边△ABC中,D是AC的中点,E是BC延长线上的一点,且CE=CD,DM⊥BC,垂足为M,求证:M是BE的中点.

【答案】证明:连接BD,

∵在等边△ABC,且D是AC的中点,

∴∠DBC= ∠ABC= ×60°=30°,∠ACB=60°,

∵CE=CD,

∴∠CDE=∠E,

∵∠ACB=∠CDE+∠E,

∴∠E=30°,

∴∠DBC=∠E=30°,

∴BD=ED,△BDE为等腰三角形,

又∵DM⊥BC,

∴M是BE的中点.


【解析】要证M是BE的中点,根据题意可知,证明△BDE△为等腰三角形,利用等腰三角形三线合一的性质即可得证。
【考点精析】认真审题,首先需要了解等边三角形的性质(等边三角形的三个角都相等并且每个角都是60°).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网